
IJDCST @June-July-2015, Issue- V-3, I-5, SW-03
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

8 www.ijdcst.com

Anonymous Authentication of Data Stored in Clouds with

Decentralized Security Mechanism

V.Yamini 1, Dr.Syed Sadat Ali 2

1 M.Tech (CSE), NIMRA WOMEN’S COLLEGE OF ENGINEERING, A.P., India.

2Associate Professor, Dept. of Computer Science & Engineering, Nimra College of Engineering and Technology(NCET), A.P.,

India.

Abstract — Motivated by the exponential growth and

the huge success of cloud, we propose a new

decentralized access control scheme for secure data

storage in clouds that supports anonymous

authentication. In the proposed scheme, the cloud

verifies the authenticity of the series without knowing

the user’s identity before storing data. Our scheme

also has the added feature of access control in which

only valid users are able to decrypt the stored

information. The scheme prevents replay attacks and

supports creation, modification, and reading data

stored in the cloud. We also address user revocation.

Moreover, our authentication and access control

scheme is decentralized and robust, unlike other

access control schemes designed for clouds which are

centralized. The communication, computation, and

storage overheads are comparable to centralized

approaches.

Keywords — Access control, authentication, attribute-

based signatures, attribute-based encryption, cloud

storage

I. INTRODUCTION

Cloud computing is receiving a lot of attention in

research from both academic and industrial worlds. In

cloud computing, users can outsource their

computation and storage to servers (also called clouds)

using Internet. This frees users from the hassles of

maintaining resources on-site. Clouds can provide

several types of services like applications (e.g.,

Google Apps, Microsoft online), infrastructures (e.g.,

Amazon’s EC2, Eucalyptus, Nimbus), and platforms

to help developers write applications (e.g., Amazon’s

S3, Windows Azure).

Much of the data stored in clouds is highly

sensitive, for example, medical records and social

networks. Security and privacy are, thus, very

important issues in cloud computing. In one hand, the

user should authenticate itself before initiating any

transaction, and on the other hand, it must be ensured

that the cloud does not tamper with the data that is

outsourced. User privacy is also required so that the

cloud or other users do not know the identity of the

user. The cloud can hold the user accountable for the

data it outsources, and likewise, the cloud is itself

accountable for the services it provides. The validity

of the user who stores the data is also verified. Apart

from the technical solutions to ensure security and

privacy, there is also a need for law enforcement.

Recently, Wang et al. [1] addressed secure

and dependable cloud storage. Cloud servers prone to

Byzantine failure, where a storage server can fail in

arbitrary ways [1]. The cloud is also prone to data

modification and server colluding attacks. In server

colluding attack, the adversary can compromise

storage servers, so that it can modify data files as long

as they are internally consistent. To provide secure

data storage, the data needs to be encrypted. However,

the data is often modified and this dynamic property

needs to be taken into account while designing

efficient secure storage techniques.

IJDCST @June-July-2015, Issue- V-3, I-5, SW-03
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

9 www.ijdcst.com

Efficient search on encrypted data is also an

important concern in clouds. The clouds should not

know the query but should be able to return the

records that satisfy the query. This is achieved by

means of searchable encryption [3], [2]. The keywords

are sent to the cloud encrypted, and the cloud returns

the result without knowing the actual keyword for the

search. The problem here is that the data records

should have keywords associated with them to enable

the search. The correct records are returned only when

searched with the exact keywords.

Security and privacy protection in clouds are

being explored by many researchers. Wang et al. [3]

addressed storage security using Reed-Solomon

erasure-correcting codes. Authentication of users

using public key cryptographic techniques has been

studied in [4]. Many homomorphic encryption

techniques have been suggested to ensure that the

cloud is not able to read the data while performing

computations on them. Using homomorphic

encryption, the cloud receives ciphertext of the data

and performs computations on the ciphertext and

returns the encoded value of the result. The user is

able to decode the result, but the cloud does not know

what data it has operated on. In such circumstances, it

must be possible for the user to verify that the cloud

returns correct results.

Considering the following situation: A law

student, Alice, wants to send a series of reports about

some malpractices by authorities of University X to all

the professors of University X, research chairs of

universities in the country, and students belonging to

Law department in all universities in the province. She

wants to remain anonymous while publishing all

evidence of malpractice. She stores the information in

the cloud. Access control is important in such case, so

that only authorized users can access the data. It is

also important to verify that the information comes

from a reliable source. The problems of access

control, authentication, and privacy protection should

be solved simultaneously. We address this problem in

its entirety in this paper.

Our Contributions:

The main contributions of this paper are the following:

1. Distributed access control of data stored in

cloud so that only authorized users with valid

attributes can access them.

2. Authentication of users who store and modify

their data on the cloud.

3. The identity of the user is protected from the

cloud during authentication.

4. The architecture is decentralized, meaning

that there can be several KDCs for key

management.

5. The access control and authentication are

both collusion resistant, meaning that no two

users can collude and access data or authenticate

themselves, if they are individually not

authorized.

6. Revoked users cannot access data after they

have been revoked.

7. The proposed scheme is resilient to replay

attacks. A writer whose attributes and keys have

been revoked cannot write back stale information.

8. The protocol supports multiple read and write

on the data stored in the cloud.

9. The costs are comparable to the existing

centralized approaches, and the expensive

operations are mostly done by the cloud.

II. PROBLEM STATEMENT

In this section, we propose our privacy preserving

authenticated access control scheme. According to our

scheme a user can create a file and store it securely in

the cloud. This scheme consists of use of the two

protocols ABE and ABS, as discussed in Sections 3.4

IJDCST @June-July-2015, Issue- V-3, I-5, SW-03
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

10 www.ijdcst.com

and 3.5, respectively. We will first discuss our scheme

in details and then provide a concrete example to

demonstrate how it works. We refer to the Fig. 1.

There are three users, a creator, a reader, and writer.

Creator Alice receives a token _ from the trustee, who

is assumed to be honest. A trustee can be someone like

the federal government who manages social insurance

numbers etc. On presenting her id (like health/social

insurance number), the trustee gives her a token _.

There are multiple KDCs (here 2), which can be

scattered. For example, these can be servers in

different parts of the world. A creator on presenting

the token to one or more KDCs receives keys for

encryption/decryption and signing. In the Fig. 1, SKs

are secret keys given for decryption, Kx are keys for

signing. The message MSG is encrypted under the

access policy X. The access policy decides who can

access the data stored in the cloud. The creator decides

on a claim policy Y, to prove her authenticity and

signs the message under this claim. The ciphertext C

with signature is c, and is sent to the cloud. The cloud

verifies the signature and stores the ciphertext C.

When a reader wants to read, the cloud sends C. If the

user has attributes matching with access policy, it can

decrypt and get back original message. Write proceeds

in the same way as file creation. By designating the

verification process to the cloud, it relieves the

individual users from time consuming verifications.

When a reader wants to read some data stored in the

cloud, it tries to decrypt it using the secret keys it

receives from the KDCs. If it has enough attributes

matching with the access policy, then it decrypts the

information stored in the cloud.

Figure 1: Our secure cloud storage model

Data Storage in Clouds

A user Uu first registers itself with one or more

trustees. For simplicity we assume there is one trustee.

The trustee gives it a token

where p is the signature on ukKbase signed with the

trustees private key TSig (by (6)). The KDCs are

given keys PK[i], SK[i] for encryption/ decryption and

ASK[i] ; APK[i] for signing / verifying. The user on

presenting this token obtains attributes and secret keys

from one or more KDCs.

The original work by Maji et al. [24] suffers from

replay attacks. In their scheme, a writer can send its

message and correct signature even when it no longer

has access rights. In our scheme a writer whose rights

have been revoked cannot create a new signature with

new time stamp and, thus, cannot write back stale

information.

Reading from the Cloud

IJDCST @June-July-2015, Issue- V-3, I-5, SW-03
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

11 www.ijdcst.com

When a user requests data from the cloud, the cloud

sends the ciphertext C using SSH protocol. Decryption

proceeds using algorithm ABE:Decrypt(C, {ski,u})

and the message MSG is calculated.

Writing to the Cloud

To write to an already existing file, the user must send

its message with the claim policy as done during file

creation. The cloud verifies the claim policy, and only

if the user is authentic, is allowed to write on the file.

User Revocation

We have just discussed how to prevent replay attacks.

We will now discuss how to handle user revocation. It

should be ensured that users must not have the ability

to access data, even if they possess matching set of

attributes. For this reason, the owners should change

the stored data and send updated information to other

users.

The set of attributes Iu possessed by the revoked user

Uu is noted and all users change their stored data that

have attributes I € Iu. In [5], revocation involved

changing the public and secret keys of the minimal set

of attributes which are required to decrypt the data.

We do not consider this approach because here

different data are encrypted by the same set of

attributes, so such a minimal set of attributes is

different for different users. Therefore, this does not

apply to our model. Once the attributes Iu are

identified, all data that possess the attributes are

collected. For each such data record, the following

steps are then carried out:

REAL LIFE EXAMPLE

Figure 2: Example of Claim policy

We now revisit the problem we stated in the

introduction. We will use a relaxed setting. Suppose

Alice is a law student and wants to send a series of

reports about malpractices by authorities of University

X to all the professors of University X, Research

chairs of universities X; Y ;Z and students belonging

to Law department in university X. She wants to

remain anonymous, while publishing all evidence. All

information is stored in the cloud. It is important that

users should not be able to know her identity, but must

trust that the information is from a valid source. For

this reason she also sends a claim message which

states that she “Is a law student” or “Is a student

counselor” or “Professor at university X.” The tree

corresponding to the claim policy is shown in Fig. 2.

The leaves of the tree consists of attributes and the

intermediary nodes consists of Boolean operators. In

this example the attributes are “Student,” “Prof,”

“Dept Law,” “Uni X,” “Counselor.” The above claim

policy can be written as a Boolean function of

attributes as

Later when a valid user, say Bob wants to modify

any of these reports he also attaches a set of claims

which the cloud verifies. For example, Bob is a

research chair and might send a claim “Research

chair” or “Department head” which is then verified by

the cloud. It then sends the encrypted data to the Bob.

Since Bob is a valid user and has matching attributes,

IJDCST @June-July-2015, Issue- V-3, I-5, SW-03
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

12 www.ijdcst.com

he can decrypt and get back the information. If Bob

wants to read the contents without modifying them,

then there is no need to attach a claim. He will be able

to decrypt only if he is a Professor in University X or

a Research chair in one of the universities X; Y ;Z or a

student belonging to Department of Law in university

X.

Here it is to be noted that the attributes can belong

to several KDCs. For example, the Professors

belonging to university X have credentials given by

the university X, and the Ph.D. degree from a

University P, the student counselor might be a

psychologist authorized by the Canadian

Psychological Association and assigned an employee

number by a university, the research chairs can be

jointly appointed by the universities X, Y , Z and the

government. The students can have credentials from

the university and also a department.

Reading from the Cloud and Modifying Data

Suppose Bob wants to access the records stored by

Alice. Bob then decrypts the message MSG using his

secret keys using function ABE:Decrypt. Writing

proceeds like file creation. It is to be noted that the

time is added to the data so that even if Bob’s

credentials are revoked, he cannot write stale data in

the cloud.

III. RELATED WORK

ABE was proposed by Sahai and Waters [6]. In

ABE, a user has a set of attributes in addition to its

unique ID. There are two classes of ABEs. In key-

policy ABE or KP-ABE (Goyal et al. [7]), the sender

has an access policy to encrypt data. A writer whose

attributes and keys have been revoked cannot write

back stale information. The receiver receives attributes

and secret keys from the attribute authority and is able

to decrypt information if it has matching attributes. In

Ciphertext-policy, CP-ABE ([8], [9]), the receiver has

the access policy in the form of a tree, with attributes

as leaves and monotonic access structure with AND,

OR and other threshold gates.

All the approaches take a centralized approach and

allow only one KDC, which is a single point of

failure. Chase proposed a multiauthority ABE, in

which there are several KDC authorities (coordinated

by a trusted authority) which distribute attributes and

secret keys to users. Multiauthority ABE protocol was

studied [10], which required no trusted authority

which requires every user to have attributes from at all

the KDCs. Recently, Lewko and Waters proposed a

fully decentralized ABE where users could have zero

or more attributes from each authority and did not

require a trusted server. In all these cases, decryption

at user’s end is computation intensive. So, this

technique might be inefficient when users access using

their mobile devices. To get over this problem, Green

et al. [11] proposed to outsource the decryption task to

a proxy server, so that the user can compute with

minimum resources (for example, hand held devices).

However, the presence of one proxy and one KDC

makes it less robust than decentralized approaches.

Both these approaches had no way to authenticate

users, anonymously. Yang et al. [34] presented a

modification of [33], authenticate users, who want to

remain anonymous while accessing the cloud.

IJDCST @June-July-2015, Issue- V-3, I-5, SW-03
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

13 www.ijdcst.com

To ensure anonymous user authentication ABSs

were introduced by Maji et al. [12]. This was also a

centralized approach. A recent scheme by Maji et al.

takes a decentralized approach and provides

authentication without disclosing the identity of the

users. However, as mentioned earlier in the previous

section it is prone to replay attack.

IV. CONCLUSION

 We have presented a decentralized access

control technique with anonymous authentication,

which provides user revocation and prevents replay

attacks. The cloud does not know the identity of the

user who stores information, but only verifies the

user’s credentials. Key distribution is done in a

decentralized way. One limitation is that the cloud

knows the access policy for each record stored in the

cloud. In future, we would like to hide the attributes

and access policy of a user.

REFERENCES

[1] S. Ruj, M. Stojmenovic, and A. Nayak, “Privacy

Preserving Access Control with Authentication for

Securing Data in Clouds,” Proc. IEEE/ACM Int’l

Symp. Cluster, Cloud and Grid Computing, pp. 556-

563, 2012.

[2] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou,

“Toward Secure and Dependable Storage Services in

Cloud Computing,” IEEE Trans. Services Computing,

vol. 5, no. 2, pp. 220-232, Apr.- June 2012.

[3] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W.

Lou, “Fuzzy Keyword Search Over Encrypted Data in

Cloud Computing,” Proc. IEEE INFOCOM, pp. 441-

445, 2010.

[4] S. Kamara and K. Lauter, “Cryptographic Cloud

Storage,” Proc. 14th Int’l Conf. Financial

Cryptography and Data Security, pp. 136- 149, 2010.

[5] H. Li, Y. Dai, L. Tian, and H. Yang, “Identity-

Based Authentication for Cloud Computing,” Proc.

First Int’l Conf. Cloud Computing (CloudCom), pp.

157-166, 2009.

[6] C. Gentry, “A Fully Homomorphic Encryption

Scheme,” PhD dissertation, Stanford Univ.,

http://www.crypto.stanford.edu/ craig, 2009.

[7] A.-R. Sadeghi, T. Schneider, and M. Winandy,

“Token-Based Cloud Computing,” Proc. Third Int’l

Conf. Trust and Trustworthy Computing (TRUST),

pp. 417-429, 2010.

[8] R.K.L. Ko, P. Jagadpramana, M. Mowbray, S.

Pearson, M. Kirchberg, Q. Liang, and B.S. Lee,

“Trustcloud: A Framework for Accountability and

Trust in Cloud Computing,” HP Technical Report

HPL-2011-38, http://www.hpl.hp.com/techreports/

2011/HPL-2011-38.html, 2013.

[9] R. Lu, X. Lin, X. Liang, and X. Shen, “Secure

Provenance: The Essential of Bread and Butter of

Data Forensics in Cloud Computing,” Proc. Fifth

ACM Symp. Information, Computer and Comm.

Security (ASIACCS), pp. 282-292, 2010.

[10] D.F. Ferraiolo and D.R. Kuhn, “Role-Based

Access Controls,” Proc. 15th Nat’l Computer Security

Conf., 1992.

[11] D.R. Kuhn, E.J. Coyne, and T.R. Weil, “Adding

Attributes to Role-Based Access Control,” IEEE

Computer, vol. 43, no. 6, pp. 79-81, June 2010.

[12] M. Li, S. Yu, K. Ren, and W. Lou, “Securing

Personal Health Records in Cloud Computing:

Patient-Centric and Fine-Grained Data Access Control

in Multi-Owner Settings,” Proc. Sixth Int’l ICST

Conf. Security and Privacy in Comm. Networks

(SecureComm), pp. 89-106, 2010.

